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CONTINUOUS RESTRICTED RADIAL MOTION

OF A GAS UNDER THE ACTION OF A PISTON

UDC 517.944+533S. V. Khabirov

The possibility of continuous conjugation of the straight-line radial motion of a gas sphere toward the
center and away from the center with the motion where the gas in the entire sphere stops simultane-
ously is shown. The motion is described by an invariant submodel of rank 1. Time reflections allow
one to construct a solution that describes a periodic continuous restricted motion of the gas sphere
under the action of a piston.

Key words: gas sphere, spherical piston, invariant submodel.

1. Formulation of the Problem. The radial motions of the gas are described by the equations

Ut + UUr + ρ−1pr = 0,

ρt + Uρr + ρ(Ur + 2r−1U) = 0, (1)

St + USr = 0, p = f(ρ, S), a2 = fρ,

where U is the radial velocity, ρ > 0 is the density, p is the pressure, S is the entropy, a is the velocity of sound,
and r is the radius of the gas sphere.

The equations admit time transposition ∂t, uniform extension t∂t + r∂r, and reflection t′ = −t, U ′ = −U .
The invariant solutions were previously considered in [1, § 21].

The regular, partially invariant solution on the subgroup of extensions has the representation

U = U(s), S = S(s), ρ = ρ(t, r), s = rt−1,

whose substitution into system (1) yields the equalities

(U − s)S′ = 0, ρ(U − s)U ′ + tfρρr + fSS′ = 0,

ρt + Uρr = −ρt−1(U ′ + 2s−1U).

The compatibility study yields three cases.
Case 1. U = s and ρ = ρ0t

−3µ(S); ρ = g(p)µ(S) is the equation of state with separated density; S = S(s) is
an arbitrary function.

Case 2. S = S0 is a constant; then, we have the integral

U2

2
− sU +

∫
U ds +

∫
fρρ

−1 dρ = D(t)

and the equation

−tD′ + (U − s)2U ′ = fρ(U ′ + 2s−1U).

The relations are compatible only if p = a2ρ + p0 (velocity of sound a is constant) and D = a2(k ln t + ln ρ0)
(k is a constant).
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Hence, we obtain

ρ = ρ0t
k exp

[
− u2

2
−

∫
u dx

]
, U = s + au(x), s = ax.

The submodel reduces to the Abel equation of the second kind

dx

du
=

x(u2 − 1)
2u− x(u2 − k − 3)

.

Case 3. S = S0, U = s, and ρ = ρ0t
−3 for an arbitrary equation of state.

We consider an isentropic radial motion for case 3 with the time transposition:

U = r(t− t0)−1, ρ = ρ0|t− t0|−3, S = S0,
(2)

p = f(ρ0|t− t0|−3, S0).

The density and pressure increase unrestrictedly as t → t0.
For a special polytropic gas, we determine the pressure and velocity of sound

p = Bρ5/3 = p0|t− t0|−5, a = a0|t− t0|−1.

Here p0 = Bρ
5/3
0 and a0 =

√
5B/3ρ

1/3
0 . The work of pressure forces on gas compression into a point equals infinity.

The characteristics of system (1) on solution (2), emanating from the point (t1, r0), are the straight lines

C0: r = r0
t− t0
t1 − t0

, C±: r = r0
t− t0
t1 − t0

± a0
t− t1
|t1 − t0|

.

Here, t lies between t0 and t1. The location of characteristics is shown in Fig. 1. The pattern is invariant on
reflection from the straight line t = t0.

For t0 > t > t1, the characteristic C− reaches the center (r = 0) at the time t2 = (r0t0 + a0t1)(r0 + a0)−1.
At t0 < t < t′1, the characteristic C ′+ emanates from the center (r = 0) at the time t′2 = (r0t0 + a0t

′
1)(r0 + a0)−1 to

reach the point (t′1, r0).
Let the piston compress a special polytropic gas, moving the latter by the law U = r(t−t0)−1, a = a0|t−t0|−1;

at the time t1, the radius of the gas sphere is r0, and the pressure approaches the limiting admissible value:
p1 = p0|t1 − t0|−5.

We find the motion of the piston r = R(t) and the pressure variation on the piston, such that the gas motion
in the sphere stops (U = 0) at the time t = t2 when the characteristic C− arrives at the center (r = 0). For this
purpose, we solve the boundary-value problem for the system of equations [a2 = 5p/(3ρ) and S = S0]

Ut + UUr + 3aar = 0,

at + Uar + 3−1a(Ur + 2r−1U) = 0
(3)
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in an angular region (Fig. 2) bounded by the straight-line characteristic C−,

r =
a0(t− t2)
t2 − t0

, U =
a0(t− t2)

(t2 − t0)(t− t0)
< 0, a =

a0

|t− t0|
, (4)

and the stagnation straight line l:

t = t2 =
r0t0 + a0t1

r0 + a0
, U = 0. (5)

The compatibility condition is satisfied at the point (t2, 0).
The following conditions should be satisfied on the piston r = R(t):

R′ = U(t, R), R(t1) = r0, p = P (t) 6 p0|t− t0|−5. (6)

From Eqs. (6), we find the law of piston motion by solving the boundary-value problem.
Reflection from the straight line t = t2 yields a solution of the form (2), where the parameter t0 is replaced

by the parameter 2t2 − t0. We obtain the Goursat problem in a spatially similar domain with data on the char-
acteristics C− and C ′+ (see Fig. 2). The problem is invariant with respect to the reflection from the straight line
t = t2; therefore, the world lines of particles are symmetric with respect to the straight line t = t2, and the data
of the Goursat problem are consistent, i.e., the world line intersects the characteristics at symmetric points with
velocities identical in magnitude but opposite in direction. As in [2], we assume that there is a unique analytical
solution of the Goursat problem for small r0. The proof of this fact requires additional considerations.

The problem of conjugation of invariant and partially invariant solutions is included into the SUBMODELS
program of gas-dynamics equations [3, 4]. Here, we give an example of continuous conjugation via the characteristic
of invariant solutions.

2. Symmetry of the Problem. We introduce new functions by the formulas

u = U/3 + a, v = U/3− a. (7)

System (3) acquires the form

ut + (2u + v)ur =
v2 − u2

2r
, vt + (2v + u)vr =

u2 − v2

2r
. (8)

Here, the operators in the left sides of equations are differentiations along the characteristics. System (8) is invariant
with respect to the following reflections: 1) u ↔ v; 2) t → −t, u → −u, and v → −v; 3) t → −t and r → −r.

The boundary conditions (4) and (5) take the form

C−: r =
a0(t− t2)
t2 − t0

, u + 2v =
a0

t2 − t0
, v − u =

2a0

t− t0
; (9)

l: t = t2, u + v = 0. (10)
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Theorem 1. System (8) admits the Lie algebra L4 of operators with the basis

X0 = ∂t, X1 = t ∂t + r ∂r, X2 = r ∂r + u ∂u + v ∂v,

X3 = t2 ∂t + tr ∂r + (r/3− tu)∂u + (r/3− tv)∂v.

Proof. It suffices to write the condition of invariance of system (8) with respect to the operator

X = ξt ∂t + ξr ∂r + ξu ∂u + ξv ∂v

for one equation of the system. For the other equation, this condition is obtained by the substitution u ↔ v.
Equations 2 of the invariance conditions have the form (see [5])

ξr
v = (2u + v)ξt

v, ξr
u = (2v + u)ξt

u. (11)

Equations 1 of the invariance conditions are

ξu
v =

v2 − u2

2r
ξt
v, ξv

u =
u2 − v2

2r
ξt
u; (12)

2ξu + ξv = (v − u)
v2 − u2

2r
ξt
u + ξr

t + (2u + v)[ξr
r − ξt

t − (2u + v)ξt
r],

2ξv + ξu = (v − u)
v2 − u2

2r
ξt
v + ξr

t + (2v + u)[ξr
r − ξt

t − (2v + u)ξt
r].

(13)

We have only to write equations 0 as(v2 − u2

2r

)2

(ξt
v − ξt

u) +
v2 − u2

2r
(ξu

u − ξt
t − ξu

v − (2u + v)ξt
r + r−1ξr) + ξu

t + (2u + v)ξu
r = r−1(vξv − uξu),

(14)

r−1(uξu − vξv) = (2v + u)ξv
r +

(v2 − u2

2r

)2

(ξt
u − ξt

v) + +
u2 − v2

2r
(ξv

v − ξt
t − ξv

u − (2v + u)ξt
r + r−1ξr) + ξv

t .

The linear system (11) has the general solution

ξt = − au + bv

(u− v)2
+ 2

a− b

(u− v)3
,

ξr = − (2v + u)au + (2u + v)bv

(u− v)2
+ 3(u + v)

a− b

(u− v)3
+ η(t, r),

(15)

where a(t, r, u) and b(t, r, v) are arbitrary functions.
Equations (13) determine the representations for ξu and ξv:

3ξu = (v − u)
v2 − u2

2r
(2ξt

u − ξt
v) + ξr

t + 3u(ξr
r − ξt

t)− (7u2 + 4uv − 2v2)ξt
r,

3ξv = (u− v)
u2 − v2

2r
(2ξt

v − ξt
u) + ξr

t + 3v(ξr
r − ξt

t)− (7v2 + 4uv − 2u2)ξt
r.

(16)

After substitution of the representations for ξt, ξr, ξu, and ξv, Eqs. (12) become equations for a and b, in
which we have to separate the variables u and v:

(u + v)(2r)−1a′′′(u− v)3 − r−1(2u + 3v)a′′(u− v)2 − r−1b′′(u− v)3

+ r−1[(3u + 11v)a′ + (7v − 3u)b′](u− v)− a′′t (u− v)2

+ (4a′t + 2b′t)(u− v) + [(4u + 8v)a′r + 6vb′r](u− v)− (2u + v)a′′r (u− v)2

= 18vr−1(a− b) + 6at − 6bt + (4u + 14v)(ar − br); (17)

the second equation is obtained by replacing u ↔ v and a ↔ b in (15). Here, a′ = au and b′ = bv.
In equality (17), we pass to the limit as u → v and obtain

18r−1va + 6at + 18var = 18r−1vb + 6bt + 18vbr. (18)
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By virtue of (18), the right side of equality (17) can be presented as

18vr−1(a(u)− a(v)) + 6(at(u)− at(v))− 4(u− v)br(v)− 18v(ar(v)− ar(u)) + 4(u− v)ar(u).

Dividing Eq. (17) by (u− v) and passing to the limit as u → v, we obtain

4vr−1a′ + 2a′t + 6va′r + 4ar = 4vr−1b′ + 2b′t + 6vb′r + 4br. (19)

By virtue of (18) and (19), equality (17) is presented in the form

[(2r)−1(u + v)a′′′(u)− r−1b′′(v)](u− v) = r−1(2u + 3v)a′′(u) + a′′t (u) + (2u + v)a′′r (u)

+ 18vr−1 a(u)− a(v)− a′(v)(u− v)
(u− v)2

− 3r−1a′(u)− 14vr−1 a′(u)− a′(v)
u− v

+ 6
at(u)− at(v)− a′t(v)(u− v)

(u− v)2
− 4

a′t(u)− a′(v)
u− v

+ 18v
ar(u)− ar(v)− a′r(v)(u− v)

(u− v)2

− 12v
a′r(u)− a′r(v)

u− v
+ 4

ar(u)− ar(v)
u− v

− 4a′r(u) + 3r−1b′(v).

Passing to the limit as u → v, we obtain b′ = a′; then, from (18) and (19), it follow that ar = br and at = bt.
Hence, we have a(t, r, v) = b(t, r, v) and Eq. (17) becomes a functional equation for determining a. We present the
functions a(u), ar(u), at(u), a′(u), . . . in the form of series in powers of (u− v), and Eq. (17) becomes

(u− v) + 2v

2r

[
a′′′(v) +

∑
k=1

1
k!

a(k+3)(v)(u− v)k
]
− a′′(v)

r

=
18v

r

∑
k=3

1
k!

a(k)(v)(u− v)k−3 − 14v

r

∑
k=2

1
k!

a(k+1)(v)(u− v)k−2

+
5v

r

∑
k=1

1
k!

a(k+2)(v)(u− v)k−1 +
2a′′(v)

r
+

2
r

∑
k=1

1
k!

a(k+2)(v)(u− v)k

− 3
r

∑
k=1

1
k!

a(k+1)(v)(u− v)k−1 + 6
∑
k=3

1
k!

a
(k)
t (v)(u− v)k−3

− 4
∑
k=2

1
k!

a
(k+1)
t (v)(u− v)k−2 +

∑
k=1

1
k!

a
(k+2)
t (v)(u− v)k−1

+18v
∑
k=3

1
k!

a(k)
r (v)(u− v)k−3 − 12v

∑
k=2

1
k!

a(k+1)
r (v)(u− v)k−2

+ 3v
∑
k=1

1
k!

a(k+2)
r (v)(u− v)k−1 + 2a′′r (v) + 2

∑
k=1

1
k!

a(k+2)
r (v)(u− v)k

+ 4
∑
k=2

1
k!

a(k)
r (v)(u− v)k−2 − 4

∑
k=1

1
k!

a(k+1)
r (v)(u− v)k−1.

Equating the coefficients at the powers of (u− v)k (k = 1, 2, 3) to zero, we obtain

vr−1aIV = aIV
t + 3vaIV

r + 8a′′′r ,

2vr−1aV = aV
t + 3vaV

r + 10aIV
r , (20)

aVI
t + 3vaVI

r + 12aV
r = 3vr−1aVI + 5(2r)−1aV .

We eliminate the derivatives with respect to the variable t:

vaV + raIV
r = aIV , vaVI + raV

r = −2−1aV .
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Eliminating the derivatives with respect to r, we obtain aV = 0. Then, it follows from Eq. (20) that aIV
r = 0,

vr−1aIV = aIV
t + 8a′′′r ⇒ aIV = 0, a′′′ = −6ξ(t) ⇒

a = −ξu3 + k2u
2 + k1u + k0, b = −ξv3 + k2v

2 + k1v + k0,

where ξ(t) and ki(t, r) are arbitrary functions. Substitution into Eqs. (15) and (16) yields ξt = ξ(t), ξr = η(t, r),
ξu = ηt/3 + u(ηr − ξt), and ξv = ηt/3 + v(ηr − ξt).

Equations 0 of system (14) are separated in terms of the variables u and v:

rηr = η, ηtt = 0, rξtt = 2ηt =⇒

ξr = r(C1t + C0), ξt = C1t
2 + C2t + C3,

ξu = (r/3− tu)C1 + (C0 − C2)u, ξv = (r/3− tv)C1 + (C0 − C2)v.

Theorem 2. There exists a unique operator Y from the algebra L4, which retains invariant the boundary
condition (9) on the characteristic C−.

The boundary conditions on the characteristic C− and straight line l are written via the invariants of the
operator Y .

Proof. We write the general operator of the algebra L4 in the form

X = x0X0 + x1X1 + x2X2 + x3X3 = (x0 + x1t + x3t2) ∂t + (x1 + x2 + x3t)r ∂r

+(x2u + x3(r/3− tu)) ∂u + (x2v + x3(r/3− tv)) ∂v.

The criterion of invariance of the manifold C− yields the relations

x2 = t2x
3, x0 = t0t2x

3, x1 = −(t0 + t2)x3.

Hence, the manifold C− is invariant with respect to the operator

Y = t0t2X0 − (t0 + t2)X1 + t2X2 + X3

= (t− t0)(t− t2) ∂t + (t− t0)r ∂r + (r/3− (t− t2)u)) ∂u + (r/3− (t− t2)v)) ∂v.

The invariants of the operator Y are defined by the basis

r−1(t− t2) = s < 0, (t− t0)(su− 1/3) = u1(t0 − t2),

(t− t0)(sv − 1/3) = v1(t0 − t2).

The boundary conditions (9) and (10) are written via the invariants

C−: s = a−1
0 (t2 − t0) = s0 < 0, u1 = 4/3, v1 = −2/3; (21)

l: u1 + v1 = 2/3, s → −0. (22)

The boundary condition (10) is stronger than (22),

U =
(1− 3/2(u1 + v1)

s
− r

t0 − t2

)(
1− rs

t0 − t2

)−1

−→ 0 (23)

as s → −0. Condition (23) is not invariant with respect to the operator Y . Here, u1 and v1 are functions of the
variables s and r.

3. Invariant Solutions. The solution of the boundary-value problem (8), (21), (22) can be sought as an
invariant Y -solution of the form

u = s−1
(
1/3 + (t0 − t2)(t− t0)−1u1(s)

)
,

v = s−1
(
1/3 + (t0 − t2)(t− t0)−1v1(s)

)
.

(24)

Substitution into (8) yields the invariant submodel

−(2u1 + v1)su′1 = 2−1(v1 − u1)2 − 3u2
1 + u1,

−(2v1 + u1)sv′1 = 2−1(u1 − v1)2 − 3v2
1 + v1.

(25)
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The invariant solution (24) is conjugate to solution (2) and is determined in the domain 0 < s < s0. The
following condition is satisfied: on the curve L (see Fig. 2)

(2/3)rs + (t2 − t0)(2/3− u1 − v1) = 0 (26)

the equality U = 0 holds.
Submodel (25) reduces to the self-similar equation

(2u1 + v1)[(v1 − u1)2/2− 3v2
1 + v1] du1 = (2v1 + u1)[(v1 − u1)2/2− 3u2

1 + u1] dv1 (27)

and the quadrature

−ds

s
=

(2u1 + v1) du1

(v1 − u1)2/2− 3u2
1 + u1

=
(2v1 + u1) dv1

(v1 − u1)2/2− 3v2
1 + v1

. (28)

Equation (27) has been studied in the papers [6; 7; 8, § 162] on self-similar compressions of a quiescent
gas sphere under the action of a spherical piston. Here, Eq. (27) is a submodel of the projective operator Y for
finding the invariant solution conjugate to the radial solution (2). The invariant submodels are identical for different
subalgebras: X1 solutions of the form u = s−1(1/3− u1), v = s−1(1/3− v1), s = (t− t2)r−1 and Y solutions of the
form (24) are determined by submodel (25). Such invariant solutions are related by the transformation

u′ =
t2 − t0
t− t0

u +
r

3(t− t0)
, v′ =

t2 − t0
t− t0

v +
r

3(t− t0)
,

which is a transformation of similarity only for the invariant solutions considered. System (8) is not invariant with
respect to these transformations; therefore, the subalgebras X1 and Y are not similar.

We describe the results of a qualitative study of the behavior of integral curves. Equation (27) has the
integral straight lines l1: u1 = v1 and l2: u1 + v1 = 2/3. The pattern of integral curves is symmetric with respect
to the straight line u1 = v1, because Eq. (27) is invariant with respect to the substitution u1 ↔ v1. There are six
singular points.

Point O (u1 = v1 = 0) is a double node with common tangential lines of the integral curves u1 = 0 and
v1 = 0.

Points B1 (u1 = −2/3, v1 = 4/3) and B (u1 = 4/3, v1 = −2/3) are degenerate nodes with a common
tangential line l2 of the integral curves. The point B coincides with conditions (21) on the characteristic C−.

Point A (u1 = v1 = 1/3) is a proper node satisfying condition (22) on the straight line l.
Point C [u1 = (1 +

√
3 )/6, v1 = (1−

√
3 )/6] is a saddle with separatrices tangential to the straight lines

v1 − (1−
√

3 )/6 + (
√

3 + 1)(
√

3∓
√

5/2 )(u1 − (1 +
√

3 )/6) = 0.

Point C1 [u1 = (1−
√

3 )/6, v1 = (1 +
√

3 )/6] is a saddle with separatrices tangential to the straight lines

v1 − (1 +
√

3 )/6 + (
√

3− 1)(
√

3∓
√

5/2 )(u1 − (1−
√

3 )/6) = 0.

The integral curves have directions with a zero slope to the v1 axis at points of the straight line m1 (2v1 +u1

= 0) and the hyperbola g1 [6(u1− v1)2 = (6u1−1)2−1]; the integral curves have directions with a zero slope to the
u1 axis at points of the straight line m2 (2u1 + v1 = 0) and the hyperbola g2 (6(u1− v1)2 = (6v1− 1)2− 1) (Fig. 3).

The hyperbolas g1 and g2 and the straight lines m1 and m2 are lines of changes in sign in expression (28).
The arrows in Fig. 3 indicate the direction of motion over the integral curves for the inequality ds > 0 to be satisfied.
There are two straight lines m1 and m2 on which the direction of the arrows changes.

The position of hyperbolas and separatrices in the saddle is determined by their slopes. The position of the
hyperbola and the tangential line of the integral curves in the degenerate node are determined in a similar manner.

The boundary condition (22) either determines the integral curve l2 or separates the integral curves passing
through the point A.

Thus, the integral curve connecting the degenerate node B and the proper node A describes the solution of
the boundary-value problem (8), (9), (26), if the expression ds does not change its sign along this integral curve.
It is seen from Fig. 3 that there are many curves of this kind: v1 = ϕ(u1, k), k is a parameter of the curves, such
that v1 − 1/3 ∼ −k(u1 − 1/3) as u1 → 1/3, 1 < k < k0 = 2 +

√
3. The curves are located between the straight line

u1 + v1 = 2/3 and separatrices of the saddle passing into the degenerate node and proper node: ϕ(4/3, k) = −2/3,
ϕ(1/3, k) = 1/3, ϕ′(4/3, k) = −1, and ϕ′(1/3, k) = −k.

The integral curve u1 + v1 = 2/3 corresponds to the solution of problem (25), (21), (22): u1 = 1/3 + ss−1
0

and v1 = 1/3− ss−1
0 . Formulas (7) and (24) give the distribution of the gas parameters (2).
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Lemma 1. For all integral curves entering the proper node, we have s → 0.
Proof. In the linear approximation, the integral curve has the form v1 ' 1/3− k(u1 − 1/3) for u1 → 1/3.

Equation (28) is written as

−ds

s
'

(
− 3

3u1 − 1
+

3(k2 − 1)
3((k + 1)2 − 6)u1 − (k + 1)2

)
du1.

Hence, we have

−s−1
0 s ' (u1 − 1/3)

(
1− ((k + 1)2/2− 3)(u1 − 1/3)

) 1−k2

(k+1)2−6

as u1 → 1/3. Consequently, s → −0, u1 ' 1/3− s−1
0 s, and v1 ' ks−1

0 s + 1/3.
The asymptotic behavior of the solution of system (24) in the neighborhood of the point s = 0, u1 = v1 = 1/3

is

u1 =
1
3

+ s1

(
− 1 +

∞∑
j=1

ajs
j
1

)
, v1 =

1
3

+ s1

(
k +

∞∑
j=1

bjs
j
1

)
, (29)

where

s1 = ss−1
0 , −b1 = a1 = (1− k2)/2, b2 = ka2, a2 = a1/2,

(j + 1)aj+1 = −kbj − (1 + (k − 2)j)aj −
j−1∑
i=1

[bibj−i

2
+

(
2(j − i)− 1

2

)
aiaj−i + (j − i)aibj−i

]
,

(j + 1)bj+1 = aj + (k − (2k − 1)j)bj −
j−1∑
i=1

[aiaj−i

2
+

(
2(j − i)− 1

2

)
bibj−i + (j − i)aibj−i

]
, j > 2.

On the invariant solution, Eq. (23) yields

U → 3(1− k)
2s0

+
r

a0s0
for s → 0

and U = 0 for r = r2 = 3a0(k − 1)/2. Hence, we have U → 3(1 − k)/(2s0) 6= 0 as r → 0 and k 6= 1 along
t = t2. The slope of characteristics increases monotonically with increasing r, which corresponds to compression.
Characteristics of one family do not intersect each other in the domain 0 < s < s0.
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4. Piston Motion. To find the law of piston motion, pressure variation on the piston, and piston position
r2 at t = t2, we have to solve problem (6).

Introducing the variable s1 = r−1
1 (t− t2) (s1 = ss−1

0 and r1 = ra−1
0 ) instead of t, we obtain

dr1

r1
=

[2(r1s1 + 1)
3(u1 + v1)

− 1
]ds1

s1
. (30)

The initial data r = r2 = 3a0(k − 1) determine the motion of the piston orthogonally approaching the
straight line t = t2. For s1 = 1, the piston position r = r0 on the characteristic s = s0 of the straight-line radial
motion is determined uniquely.

Reflection from the straight line t = t2 yields a continuation of the solution through the velocity discontinuity
(velocity changes its sign); the velocity of sound is continuous. The condition of the contact discontinuity is
simultaneously satisfied at all points of the sphere r 6 r2.

5. Variation of Constants of the Invariant Solution. The invariant solution (24) depends on two
constants: k and s0. We present the solution of system (8) in the form

u =
1
s

(1
3
− u1(k, n)

s1r1 + 1

)
, v =

1
s

(1
3
− v1(k, n)

s1r1 + 1

)
, (31)

where s = (t− t2)r−1, r1 = ra−1
0 , s1 = ss−1

0 , k = k(s1, r1), and n = n(s1, r1); the functions u1(k, s1) and v1(k, s1)
determine the presentation of the invariant solution (29).

The asymptotic behavior n ∼ s1, k ∼ 2r1/3 + 1 as s1 → 0 provides orthogonality of the world lines to the
straight line t = t2. We require that U = 0 for r = 0 =⇒ u1 + v1 = 2/3 (r1 = 0).

The conditions n = 1 and kr1 = 0 for s1 = 1 ensure conjugation of the solution to the straight-line radial
motion (2).

Substitution of (31) into (8) yields the equations for the functions n and k:

(2u1 + v1)[u1ks1ks1 + u1n(s1ns1 − n)] + (1 + s1r1 − 2u1 − v1)r1(u1kkr1 + u1nnr1) = 0,

(2v1 + u1)[v1ks1ks1 + v1n(s1ns1 − n)] + (1 + s1r1 − 2v1 − u1)r1(v1kkr1 + v1nnr1) = 0.
(32)

This system becomes degenerate at s1 = 0 and r1 = 0. In the neighborhood of s1 = 0, we construct a
solution in the form of a series in powers of s1, which satisfies the required asymptotic behavior for s1 → 0 and
r1 = 0.

Indeed, if n = s1 + n2s
2
1 + n3s

3
1 + . . . , k = 1 + 2r1/3 + k1s1 + . . . , then it follows from (32) that n2 =

0, k1 = 2r1/3(1 + r1/3), n3 = −2r1/3(1 + r1/3)(1 + 2r1/3), . . . . By virtue of the expansion u1 + v1 − 2/3
= n(k−1)+O(n2) ∼ 2r1s1/3(1+(1+ r1/3)s1 + . . .) → 0 as r → 0, the condition at the boundary r = 0 is satisfied.

This is the way the asymptotic behavior of the solution of the Goursat problem is constructed in the
neighborhood of the straight line t = t2 for s < 0.

6. Reflected Solution. We consider a solution that is a reflection of the constructed solution from the
straight line t = t2. It describes continuous restricted expansion of the gas up to the straight-line radial motion by
law (2), where t0 is replaced by 2t2 − t0. The characteristic C− is transformed to the characteristic

C ′+: r = a0
t− t0
t0 − t2

, 2u + v =
a0

t0 − t2
, v − u = − 2a0

t− 2t2 + t0
. (33)

Condition (5) on the straight line l remains unchanged: u + v = 0.
Manifold (33) is invariant with respect to the operator similar to the operator Y from Theorem 2, where t0

is replaced by 2t2 − t0.
The invariants and the form of the invariant solution change accordingly:

u = s−1(1/3 + (t2 − t0)(t + t0 − 2t2)−1u1(s)),

v = s−1(1/3 + (t2 − t0)(t + t0 − 2t2)−1v1(s)), s = (t− t2)r−1.

Substitution into system (3) leads to system (25) with the boundary conditions C ′+: s = (t0 − t2)a−1
0

= −s0 > 0, u1 = −2/3, v1 = 4/3, and l: u1 + v1 = 2/3 as s → 0. These conditions correspond to the integral
curves of Eq. (27) connecting the singular point A (proper node) and the singular point B1 (degenerate node),
along which the value of s (ds > 0) monotonically increases if we move along the arrow (see Fig. 3). These integral
curves are symmetric with respect to the bisector u1 = v1 to the integral curves v1 = ϕ(u1, k) solving the problem
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of continuous restricted compression of the gas until its stop on curve (26), i.e., they are represented by the formula
u1 = ϕ(v1, k) and the asymptotic curve u1 − 1/3 ∼ −k(v1 − 1/3) as v1 → 1/3.

The boundary condition (23) becomes

2/3− u1 − v1

s1
−→ 2r1

3
for s1 → 0.

The equation for the world line coincides with problem (30) where s0 is replaced by −s0 and is considered
for s > 0. The problem is invariant with respect to the substitution s0 → −s0, s → −s, u1 ↔ v1; therefore, the
answer is written by the solution of problem (30). Variation of the constants of the reflected invariant solution
yields the asymptotic solution for the Goursat problem in the neighborhood of the straight line t = t2 for s > 0.

7. Periodic Motion. We consider the problem of a continuous transformation of the gas expanding by
law (2) into the gas compressing by a similar law (reflection from a certain straight line t = const).

Let the piston moving along the straight line C0: r(t1 − t0) = r0(t − t0) change its motion at the time
t = t1 so that the gas in the entire sphere stops at the time t = t2, and the motion is smooth for all t. The time
t2 = (r0t0 − a0t1)(r0 − a0)−1 is determined by the intersection of the characteristic C− on solution (2) with the
axis t (Fig. 4). The inequality r0 < a0 should hold; otherwise, the straight-line characteristic C− would not cross
the axis t. If this motion is constructed, then the reflection from the straight line t = t2 yields the solution of the
posed problem.

We seek the solution of Eq. (3) in the angular domain bounded by the characteristic C−: r = a0(t− t2)(t0
− t2)−1, where the functions U = a0(t − t2)(t0 − t2)−1(t − t0)−1 > 0 and a = a0(t − t0)−1 are specified, and the
stagnation straight line l: t = t2, where the velocity is U = 0. The no-slip condition (6) is satisfied on the piston
r = R(t). From this condition, we find the world lines of particles.

The problem is invariant with respect to the operator Y from Theorem 2; hence, the solution can be found
in the form (24) for Eqs. (27) and (28) with conditions that coincide with (21) and (22). Hence, the solution u1(s),
v1(s) is the same as that in the problem of transforming the compressing gas into the expanding gas.

In calculating the world lines, the difference in formulas (30) is only the sign of the expression t2−t0 = −a0s0.
Then, all considerations from Secs. 3–6 are valid.

Consecutive conjugation of radial expansion and radial compression leads to a periodic continuous radial
motion of the gas sphere under the action of a periodic motion of the spherical piston.

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00550) and the
Councils for Supporting the Leading Scientific Schools (Grant No. 00-15-96163).
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